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Introduction 

Prices for food crops are naturally volatile – their supply 
depends on unpredictable factors like the weather. 
While volatility is not problematic per se, uncertain and 
excessive price movements present a threat. Abnormally 
high agricultural price volatility can have severe impacts 
on governments, which have to finance imports of 
foodstuffs and also rely on export earnings from 
commodities. Large effects are also felt by farmers and 
consumers, especially in developing countries, where 
about two billion people live off small farms and spend 
large shares of their income on food items (IFAD, 2016). 
Especially in the absence of coping mechanisms such 
as storage, savings or access to credit and insurance, 
the repercussions of extreme price instability can be 
devastating. Vulnerable households are left with little 
scope to mitigate unusually high prices other than by 
lessening the intake of nutritious food, dropping out of 
school, lowering access to healthcare or distress sales of 
land and livestock. These responses can result in poverty 
traps and, accordingly, have long-term consequences. 
Producers are affected too. As sellers of commodities, 
high volatility brings with it considerable downside price 
risk, which affects planting decisions and undermines 
agricultural investment where it is needed most.

We have witnessed episodes of low volatility alternating 
with phases of high volatility (Greb and Prakash, 2015). 
However, it is not well understood what brings about these 
changes and which variables could forewarn increased 
volatility levels in advance. It becomes, therefore, crucial 
to anticipate an increase in price volatility, to prepare for 
such periods, or even to design policies to prevent them. 
Theoretically, mechanisms that influence the frequency 
and amplitude of price movements are firmly established 
in the literature. An example is the role of stocks in 
buffering supply shocks (Wright, 2011). The demand 
curve for wheat incorporates two different demands, the 
demand for immediate consumption and the demand 
for stocks to be accumulated for deferred consumption. 
This additional demand prevents price slumps in case of 
abundant supplies and at the same time allows to smooth 
prices in case of a shortfall – unless stocks are too low. 
Yet, in order to derive concrete policy implications, it is 
essential to acknowledge that not only low inventories 
can trigger an increase in the amplitude of price spikes, 
but pinpoint the critical inventory level that needs to be 
maintained to prevent such spikes from happening.

This study aims at identifying such thresholds associated 
with transitions between different levels of price 
volatility. Being statistically driven, the study surveys 
a host of factors related to price dynamics of food 

crops, and tries to isolate relevant determinants of 
volatility transition and to discover their change points. 
In terms of exact methodology, our analysis rests on a 
statistical estimation and variable selection algorithm 
termed component-wise gradient boosting. We adopt 
this approach because it enables us to flexibly model 
the influence of different variables, including abrupt 
transitions. In addition, it allows one to incorporate and 
select from a multitude of potentially relevant variables, 
even collinear ones. While policy recommendations 
naturally follow from the results, there are also findings 
that demand further investigation.

The study is structured as follows. We explain our 
modelling and estimation strategy in the next section. 
In the third section, we describe the data employed and 
covariates used. Following a presentation and discussion 
of the estimation results in the fourth section, the 
fifth section concludes the paper. We defer complete 
estimation results to an appendix.

Methods

We closely follow the methodology suggested in Mittnik 
et al. (2015). They analyse the volatility of the S&P 500 
index employing componentwise gradient boosting 
to an exponential ARCH model including exogenous 
variables. This setup allows to not only identify relevant 
external factors associated with stock market volatility 
and quantify their impact, but also formulate a model 
with higher predictive performance than the benchmark 
models, which Mittnik et al. (2015) argue are the 
GARCH(1,1) model (Hansen and Lunde, 2005) and, in our 
specific context, the exponential GARCH model.

Modelling framework
While the GARCH model is arguably the most prolific way 
to represent conditional variances, we adopt Nelson’s 
(1991) exponential ARCH model, which overcomes 
certain drawbacks of the GARCH framework (such 
as ruling out a negative correlation between current 
returns and future volatility or imposing restrictions on 
the parameters that might unduly limit the dynamics of 
the conditional variances). More precisely, for prices pt 
we model logarithmic returns                         as

 

						       

						       (1)

Assessing volatility patterns in food crops 1



where              are independent normal errors and 
t  = 1, . . . , T. The variable yt indicates the year of the 
t-th observation, the variable mt the month, and     
                         , denote additional explanatory variables 
with a potential impact on volatility. The number of lags 
Kj to be included is variable-specific and varies between 
zero and three. We define functions                   as so-called 
“trees”

for disjoint intervals        s = 1 ...S, partitioning R. 
This functional form is very flexible and allows to 
capture nonlinearities such as abrupt transitions in the 
dependencies.

For S = 2, A1 = {z|z          and A2 = {z|z > c}, c ∈ R   , we 
get a function

that is, our modelling framework is versatile enough to, 
for example, include a stocks-to-disappearance ratio z 
triggering an increase in price volatility by exp(0.5 · (γ1 − 
when falling below a critical threshold c.

Boosting (estimation and variable selection)
There are distinct advantages to using componentwise 
gradient boosting to estimate model (1). This estimation 
method allows to include a very large number of 
covariates, even collinear ones, suspected to be related 
to the outcome. The fitting process incorporates a 
mechanism for model choice, which selects variables 
that are relevant. In addition, while allowing for 
considerable flexibility in the shape of the dependencies 
between response and explanatory variables, it still yields 
interpretable results.

Boosting aims to estimate a function η relating explanatory 
variables Z1, . . . , Zp to a response variable Y by minimizing 
the expected loss E [f (Y, η (Z1, . . . , Zp)) for a loss function 
f . It is a stepwise gradient descent algorithm approaching 
the minimum of the observed mean loss, f (yt, η (z1,t, . . . , 
until reaching a stopping iteration msto.

Buehlmann and Hothorn (2007) detail the boosting 
algorithm after specifying a base learning procedure – i.e. 
a way to generate an estimate g of a function g relating 
a real-valued response Yt to p-dimensional predictor 
variables Zt for 1, . . . , T – as follows,

(i)	 Initialize ηˆ0with an offset value and set m = 0.

(ii)	 Increase m by 1, compute the negative gradient 
−∂ηf(yt,  and evaluate it at                for t = 1, ...,T,

 
The negative gradient can be thought of as a generalized 
residual; for the squared error loss function f(yt, η) = 1/2   
we get um = yt − η , the residual.

(iii)	 Fit the so-called pseudo-residuals um, . . 
to z1, . . .by the base learning procedure 
 
 

(iv)	 Update

        for a small step-length ν ∈ (0, 1].

(v)	 Iterate steps (2) to (4) until m = mstopis reached for 
some fixed          . msto..

Componentwise gradient boosting refers to a modification 
of this algorithm. In the third step “base-learners” or 
regression estimators based on a fixed subset of the 
predictor variables, are fitted individually to the negative 
gradients um, . . . , umand only the fit of the base-learner 
correlating most with the gradients is included in step (iv) 
as m. More precisely, this means changing step (iii) to

(iii) For each of the Q base learners, fit gq to the negative 
gradient vector    , um, . . . , um,

 
Select the base-learner that yields the best fit according 
to the sum of squared residuals

and set gˆm = . (To simplify notation we write gˆm(z 
although the q-th base-learner does not necessarily 
depend on all p variables Z1, . . . , Zbut only a subset.)

The stopping iteration mstopis a crucial tuning parameter 
of the algorithm. We use cross-validation based on 
250 bootstrap samples of size T to choose the stopping 
iteration msto, however, other approaches such as 
AIC-based criteria are also common. Clearly, only one 
base-learner enters the estimate η (and, hence, the model) 
at each iteration. Covariates that have not been selected 
as the best-fitting component at any step m ≤ mstop 
become redundant and drop out of the model.
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In case of our model (1) there are                                                 base-learners. 
We specify all but one  –  an ordinary least squares 
base-learner for a linear time trend β0 + β1 · t – as 
regression trees with two nodes and the estimator 
proposed by Hothorn et al. (2006). The effects of 
year, month, lagged returns and additional exogenous 
variables and their lags enter in this way. To complete the 
description of our estimation procedure, we define f as 
the negative log-likelihood loss function according to (1).

It might trouble some readers that our manuscript does 
not present any significance tests. This is inherent in 
the modelling approach we take. In his paper on the 
“two cultures” of statistical modelling Breiman (2001) 
distinguishes two different goals of data analysis –
information and prediction – leading to explanatory and 
predictive modelling, respectively. In the case of explanatory 
modelling, theory determines the specific model relating 
independent variables Z1,...,Zp  to the dependent variable 
Y. Hypotheses about this theoretical construction are then 
tested. However, when data feature complex patterns 
and relationships, the attempt to formulate a model 
based on theory does not seem a natural or promising 
approach. Instead, an algorithmic solution associating the 
variables according to a criterion of predictive accuracy 
can be used  – predictive modelling. Shmueli (2010) 
points out several dimensions of the differences between 
these two ways to analyse data. Namely, the first 
assumes a causal relation between Z1,...,Zp and Y while 
it is mere association in the second case; in the first case 
model-building is theory-driven, while it is data-driven in 
the second; we take a backward-looking perspective in 
the first, a forward-looking one in the second case. In 
particular, model validation differs. Explanatory models 
are assessed testing the goodness of fit and examining 
residuals. Predictive performance, on the contrary, is 
the criterion to validate predictive models. Given that 
commodity price volatility is determined by a complex 
interplay of numerous factors, it is predictive power, not 
statistical significance that guides our analysis. Whereas it 
might still be interesting to formulate and test hypotheses 
about the model, to the best of our knowledge, inference 
within a boosting framework is ongoing research and 
significance tests are not yet available.

Data and covariates

Price data
We examine price volatility for three of the four AMIS 
commodities – wheat, maize, and soybeans. Because of 
the idiosyncrasies of the rice market, namely its absence 
on global commodity exchanges and the importance of 
domestic policies in price formation which cannot be 

readily quantified, we omit this commodity. We study 
price data obtained from the International Grains Council 
(IGC), namely their Grain and Oilseed Index’ (GOI) 
sub-indexes for wheat, maize and soybeans as well as the 
quotations included in these indexes. The GOI’s sub-index 
for wheat is an unweighted average of ten export 
quotations – Argentinian Trigo Pan (Up River), Australian 
ASW (Port Adelaide), Black Sea milling wheat, Canadian 
No. 1 CWRS, 13.5% (St.  Lawrence), Canadian  No. 1 
CWRS, 13.5% (Vancouver), European/French standard 
grade wheat (Rouen), US No. 2 HRW  (Gulf), US  No. 2 
SRW (Gulf), US No. 2 DNS, 14% (PNW), and US No. 2 
SW (PNW). Quotations included in the GOI’s sub-index 
for maize are from Argentina (Rosario, Up River), Black 
Sea, Brazil (Paranagua), as well as US No.3 Yellow (Gulf). 
Again, all quotations enter the average with identical 
weight. As we do not have prices for the Black Sea before 
August 2010, we do not analyze this quotation separately. 
Similarly, prices from Argentina (Rosario, Up River), Brazil 
(Paranagua), and US No.2 Yellow (Gulf) enter the GOI’s 
sub-index for soybeans (again, an unweighted average). 
All quotations are export prices in USD per ton, FOB. In 
Figure 1 we display indexes together with the individual 
quotations by commodity.

Our analysis focuses on monthly data since we try to 
quantify the impact of variables that change at a monthly, 
but not necessarily daily frequency. For example, the 
most influential update of the stocks-to-disappearance 
ratio (see following section), one of the variables we 
look at, becomes available with the release of the 
World Agricultural Supply and Demand Estimates Report 
(WASDE) by the United States Department of Agriculture 
(USDA). This happens once a month, generally between 
the 8th and the 12th of each month. Our data series start 
in January 2000 and run until December 2015. While 
we study monthly observations, our underlying IGC data 
are weekly or even daily. To assure robustness of our 
findings in view of different possible ways to aggregate 
these, we decide to simultaneously analyze three sets of 
monthly price observations per commodity. For each, we 
create a series of the last week’s (or last day of the last 
week’s) price, the third week’s (or last day of the third 
week’s) price and a monthly average price.

Covariates
As suggested in Algieri’s (2014) investigation of the main 
drivers of the international wheat price, we consider 
four broad classes of variables – market fundamentals, 
macro-economic, financial and weather variables. To 
avoid ambiguities and facilitate recognizing the variables 
in Table 2 to Table 7 (in the appendix), we include 
short names identifying the variables in bold type and 
parenthesis in the text.
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Figure 1: GOI sub-indexes and individual quotations for wheat, maize, and soybeans
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Market fundamentals

Inventories
Inventories are crucial to smooth consumption. Thus, 
they can also help to even out prices. A bumper crop 
triggers less of a fall in prices when part of it is stored. 
Releasing stocks can absorb the supply shock of a bad 
harvest and prevent a spike in prices. Naturally, this is 
only possible if stocks are sufficient to cover the loss. 
When stocks are low commodity prices are more prone 
to big movements. The relationship between stocks 
and commodity prices has been explored in detail in 
Deaton and Laroque (1992), Bobenrieth et al. (2013), 
Wright (2011), and Pindyck (2001) to name just a few. 
We include four variables related to inventories in our 
analysis – the world’s stocks-to-use ratio (stocks2useW), 
the stocks-to-use ratio for the United States 
(stocks2useUS), and the stocks-to-disappearance ratio 
for major exporters with and without the United States 
(stocks2disMExUS and stocks2disMEx, respectively). 
The stocks-to-use ratio is defined as ending stocks over 
utilization, the stocks-to-disappearance ratio as ending 
stocks over domestic utilization together with exports.

Yield
Balcombe (2011) proposes yield as a potential determinant 
of volatility (yield). He conjectures that the impact of 
extraordinarily high and low yields on volatility might 
differ. However, he points out that even if a dramatic fall 
in prices might result in an increase in volatility, it might 
also result in a decrease due to replenishment of stocks.

Market thinness
A thin market is characterized by a low number of buyers 
and sellers, hence, few transactions, which makes it more 
susceptible to price fluctuations. Relating the number of 
transactions to the quantities traded, we follow Algieri 
(2014) in measuring thinness as the ratio of exports to 
global consumption (thinness1) or, alternatively, exports 
to global production (thinness2).

Market concentration
Another trade-related characteristic of global commodity 
markets is the degree of export concentration 
(Herfindahl). If only two or three important players 
account for nearly all exports of a commodity, domestic 
weather shocks or changes in their policies can have 
a strong impact on prices. The more diverse are the 
exporters and the smaller their respective shares, the 
better is the insulation of the market against idiosyncratic 
shocks. We use the Herfindahl index to measure export 
concentration (Balcombe, 2011). It is defined as

and xi denotes the quantity exported by the i-th country. 
The closer the index is to zero, the less concentrated the 
market. A single player, in contrast, would result in a 
Herfindahl index of one.

For all of the above variables we use the USDA’s 
WASDE as our data source. An intrinsic difficulty when 
compiling data series from commodity balance sheets is 
to determine the relevant marketing year for countries’ 
crops. The WASDE shows harmonized estimates across 
a given marketing year (MY) and forecasts for the next. 
To give an example, the report released in January 2000 
shows an estimate for the ending stocks of 1998/99 MY 
and a forecast for the 1999/2000 MY. Among the two 
of these, the level of the 1999/2000 MY ending stocks 
has a stronger impact on the market in January 2000, 
and hence will constitute the value of our time series 
for January 2000. In May of any given year, however, 
WASDE shifts marketing years. That is, while the April 
2000 report gives estimates for the 1998/99 MY and 
forecasts for the 1999/2000 MY, the May 2000 report 
gives estimates for the 1999/2000 MY and forecasts for 
the 2000/2001 MY. As it is unlikely that the 1999/2000 
MY ending stocks suddenly become irrelevant for 
the market, we decide to take a weighted average of 
the 1999/2000 MY’s ending stocks estimate and the 
2000/2001 MY’s ending stocks forecast to generate a 
single entry for the time series in May 2000. We create 
all variables based on data from commodity sheets as 
weighted averages (with the new marketing year linearly 
gaining influence while the old one looses it) for two 
different marketing years for the months of May, June, 
and July; and we take forecasts for the current marketing 
year for the remaining months.

Macroeconomic variables

Interest rates
Part of the cost of carry of a commodity inventory is 
the opportunity cost of forgone interest. A lower interest 
rate, thus, reduces the cost of storing a commodity, 
resulting in upward pressure on its price. An increase 
in interest rates, on the contrary, triggers the reverse 
price movement. Frankel (2008) provides a detailed 
investigation of the interconnections between monetary 
policy and commodities. Another consequence of a 
change in interest rates can be increased (in case of a 
lower interest rate) or decreased (in case of a higher 
interest rate) flow of money into commodity futures or 
options, perceived as financial assets by non-commercial 
traders. We include the Effective Federal Funds Rate 
(FEDFUNDS) as well as the 6-Month Treasury Bill 
(TB6MS) as variables in our model.
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Oil price
The oil price affects the price for agricultural commodities 
through different channels. Input costs depend on energy 
costs via processing and fertilizer costs. Transportation 
and distribution costs also vary with the oil price. In 
addition, prices of oil and agricultural commodities are 
linked to each other via biofuel. It might be important 
to not only focus on the price of oil but also on its 
volatility. Here we make two volatility estimates part of 
our analysis, realized volatility and conditional volatility. 
We compute realized volatility from daily data as the 
sample standard deviation of logarithmic returns in a 
month. Conditional volatility estimates are based on a 
GARCH model. Level, realized and conditional volatility 
for two crude oil benchmark prices, the Western Texas 
Intermediate price in Cushing, Oklahoma, (WTI) and the 
European Brent price (BRENT), enter our study.

Stock market volatility
As a general measure of economic risk and uncertainty 
we include the Chicago Board Options Exchange’s 
Volatility Index VIX (VIX). The index measures market 
expectation of near term volatility conveyed by stock 
index option prices. It is based on the S&P 500 index’ 
expected volatility, computed as the mean of weighted 
prices of put and call options on the S&P 500 index over 
a wide range of strike prices. Details on its calculation 
are gathered in CBOE (2015). The VIX, frequently cited in 
the media, is sometimes referred to as the “fear gauge” 
(although CBOE (2009) claims this to be a misnomer).

Our data source for interest rates, oil prices as well as 
VIX is the Board of Governors of the US Federal Reserve 

System. We retrieve them from FRED, Federal Reserve 
Bank of St. Louis (https://research.stlouisfed.org/fred2/).

Foreign exchange
International commodity prices have typically had an 
inverse relationship with the value of the USD. When 
the USD strengthens against other major currencies, 
commodity prices tend to fall. On the contrary, when 
the value of the USD weakens against other major 
currencies, the prices of commodities increase. The 
relationship is chiefly a result of commodities being 
priced in USD and of international buyers being required 
to purchase them with USD. When the value of the USD 
rises (falls), buyers have less (more) purchasing power 
and so demand usually weakens (strengthens). Hence, 
changes in exchange rates reallocate purchasing power 
and price incentives for buyers and sellers. We construct 
indexes (FX) of the foreign exchange value of the USD by 
commodity along the lines of the Trade-Weighted U.S. 
Dollar Index published by the US Federal Reserve System 
(Loretan, 2005), a weighted geometric mean of bilateral 
exchange rates,

It is the value of the index at time t, ej,t and wj,t are 
USD exchange rate and the weight of the j-th currency at 
time t, respectively. For each commodity, we determine 
the set of relevant currencies as those of countries that 
together account for 90% of the exports and imports (in 
any year between 2000 and 2015). Weights are updated 
yearly and based on trade shares,

Figure 2: Dollar indexes by commodity, major currencies and broad dollar index
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where sIMPORT (sEXPORis the import (export) share of 
the j-th country at time t. The index is set to equal 100 in 
January 2000. We obtain trade data from FAOSTAT and 
exchange rates from OANDA (http://www.oanda.com/
currency/historical-rates/). Indexes are shown in Figure 2 
along with the Major Currencies and Broad Dollar Index 
(standardized to equal 100 in January 2000 as well).

Variables related to financialization
There has been extensive discussion in the aftermath 
of the 2007/08 price spikes in agricultural commodity 
markets about the effect of financialization on price 
levels and volatility. Financialization refers to “the 
process of alignment of commodities returns with 
pure financial assets (’pooling effect’), so increasing 
co-movements among asset classes that have been 
historically seen as following opposite causal pattern” 
(Valiante, 2013, page 52). There is no consensus in the 
literature regarding the role of financialization, whether 
it led to price spikes and increased volatility. Will et al. 
(2012) survey this literature; Lagi et al. (2015) and Etienne 
et al. (2015) provide more recent reviews.

Studies on the topic of financialization of agricultural 
commodity markets rely on different variables. Our 
analysis, thus, contains not just one but a number of 
them. A common indicator (Valiante, 2013; Robles et al., 
2009; Algieri, 2014) is the number of trades in futures 
contracts (Volume). We focus on volumes at the Chicago 
Board of Trade (CBoT) as a leading exchange. According 
to Robles et al. (2009) contracts traded typically expire 
within the next 24 months. As the CBoT’s wheat, maize, 
and soybeans future contracts expire five times a year, 
we add up volumes traded for ten (or nine, depending 
on data availability) future continuations. Data source is 
Thomson Reuters.

The U.S. Commodity Futures Trading Commission (CFTC) 
publishes a weekly report on commitments of traders 
showing open interest broken down into reportable – 
commercial and non-commercial – and non-reportable 
positions. A trader’s position becomes reportable once 
it exceeds levels set by the CFTC. A trader is further 
identified as commercial if futures contracts held serve 
hedging purposes, while non-commercial traders typically 
do not hold a position in the underlying commodity 
(CFTC, 2016). We use the CFTC’s Commitment of Traders 
reports to create a set of variables. One of these is open 
interest, the total of all futures contracts entered into 
and not yet offset by a transaction, delivery, or exercise 
(OpenInterest).

If we assume that those traders who view agricultural 
commodity futures and options as just another asset class 
and without interest in the actual underlying commodity 

show a trading behavior distinct from commercial players, 
it can be instructive to examine the ratio of volume to 
open interest (Vol2OpenInterest). We suspect that 
these speculative traders quickly get into and out of the 
market whenever opportunities arise, hence, augmenting 
the number of trades, i.e. volume, but not necessarily 
increasing open interest at the same time.

We further use the CFTC’s separation of commercial 
from non-commercial traders to capture the relative 
amount of actors in pursuit of financial profits instead of 
hedging existing risk. We include the ratio of both long 
and short non-commercial to total positions in CBoT 
futures contracts in our study (S2TotalL and S2TotalS, 
respectively).

Valiante (2013, Figure 36) shows evidence for differences 
in net positions in agricultural commodity markets. While 
commercial traders tend to be net short on average, it is 
their financial counterparts that are net long. We include 
net non-commercial long positions as another measure 
of speculative activity frequently used in the literature 
(netL) (Micu, 2005; Domanski and Heath, 2007).

Working’s speculative index goes a step further, 
distinguishing speculative positions necessary to absorb 
residual positions of commercial actors from those going 
beyond this position (Working) (McPhail et al., 2012; 
Bastianin et al., 2012; Algieri, 2014). To this end, the 
index is defined as

where S(n)c are (non) commercial short and L(n)c (non) 
commercial long positions. Because the aggregate of all 
short open interest has to equal that of all long open 
interest, Snc + Sc = Lnc + Lc, it is clear that whenever 
Sc /= Lc some non-commercial position Snc > 0 or Lnc > 0 
is needed to equilibrate excess Lc or Sc, respectively. 
Hence, in case of Sc > Lc, Lnc has to be greater than zero 
for long positions to offset short positions. However, 
if, in addition, Snc > 0 this indicates that speculation 
positions exceed what is necessary to balance hedges by 
commercial market participants.

Weather variables
Weather determines conditions for crop growth and, 
ultimately, crop outcomes. Thus, weather variability can 
cause fluctuations in supply of agricultural commodities 
and their prices. We include FAO’s Agricultural Stress Index 
as a broad measure of vegetation health (ASI). This index 
is based on the integration of the so-called Vegetation 
Health Index in two dimensions that are crucial for the 
assessment of a drought event in agriculture, time and 
space (Rojas, 2015). We use its annual summary, which 
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reports the percentage of arable land with a Vegetation 
Health Index below a critical threshold. FAO is the source 
of these data.

A different group of indicators quantifying weather 
conditions relevant for crop growth is based on 
measurements related to El Niño and La Niña. These 
are irregularly occurring changes in wind and rainfall 
patterns, which affect agriculture. They are the result of 
a chain of events prompted by unusually high (El Niño) 
or low (La Niña) sea surface temperatures in a specific 
area in the Pacific Ocean. Hence, a natural indicator 
to consider is sea surface temperature anomalies in 
this particular region, the Niño 3.4 region (NINO34) 
(Ubilava, 2014; Algieri, 2014). An El Niño (La Niña) event 
is characterized by the Oceanic Niño Index, the running 
3-months average sea surface temperature anomaly for 
the Niño 3.4 region, being above 0.5oC (below −0.5oC) 
in five consecutive instances (Rojas et al., 2014). For this 
reason, we also consider the Oceanic Niño Index in our 
analysis (ONI).

Another variable indicating episodes of El Niño or La 
Niña is the Southern Oscillation Index (SOI). It measures 
large-scale fluctuations in air pressure between Tahiti 
and Darwin, Australia, typical for El Niño and La Niña 
episodes. Unusually low air pressure at Tahiti combined 
with abnormally high air pressure at Darwin results in 
negative values for the Southern Oscillation Index. These 
coincide with changes in the water temperature that 
characterize El Niño. The reverse – positive values for 
the Southern Oscillation Index – holds for episodes of 
La Niña.

We collect El Niño related data from the National Oceanic 
and Atmospheric Administration’s Climate Prediction 
Center (http://www.cpc.ncep.noaa.gov/).

Results and discussion

Interpretation of estimates
Before we enter a discussion of the estimates, some 
comments might be helpful to correctly interpret the figures 
and tables. Looking at formula (1), we see that volatility, 
i.e. the standard deviation of the logarithmic price returns      
exp           ,is modeled as a product of different factors,

Each of the factors involving a tree                  takes 
S different values,exp (γ1/2) , . . . , exp (/ )We divide 
these by the value the function f·(z) takes for an 
arbitrarily small z, e.g. exp (γ1/2) in case A1 = (−∞, c ], 
and augment the product exp (ηt/2) by the same factor. 
This leaves us with trees f ˜(z) that take the value one for 
z → −∞ –  that is, γ˜1 = 1 – still assuming A1 = (−∞, c ] – 
which facilitates assessment of the impact of passing a 
critical threshold and its comparison across variables and 
between different price series.

For illustration we return to the very simple tree 
introduced in section 2,

where  zt ∈ Vt = {yt, mt, rt−1, rt−2, rt−3, x1,t, . . . , xJ,and 
re-write 

Given that the term exp [ηt/2 − f (zt)/2] · exp (γ1/2) does 
not depend on the variable zt, we see that holding all 
variables vt ∈ Vt, vt /= zt, constant, the effect of the 
variable zt passing the critical threshold c is a change 
in volatility by the factor exp [(γ2 − γ1) /2] relative to its 
level for arbitrarily small zt.

As an example of how to interpret Figure 3 to Figure 5 
(as well as the figures in the appendix), we focus on the 
upper left panel of Figure 3. Here we observe a decrease 
in volatility of the price of Canadian wheat at the port 
of St Lawrence by nearly 30 percent (i.e. multiplication 
by a factor of 0.72 instead of 1 or a jump down by 0.28) 
when the stocks-to-use ratio in the United States is 
above a critical value of 37 percent. The volatility of the 
International Grain Council’s wheat index also decreases 
when the US stocks-to-use ratio grows larger than 
37 percent, however, only by 20 percent.

Interrelation between estimates
Before discussing details, it might be helpful to 
comment on how we relate estimation results for 
different price series but the same commodity to each 
other. While model selection and estimated trees 
should be somewhat similar among prices for the same 
commodity, we do not expect them to be identical. 
Indeed, we find that, for example, there is a 39 percent 
threshold for the United  States’ stocks-to-use ratio 
for US No.2 Soft Red Winter wheat, below which 
the level of volatility jumps up. However, for most 

.

–
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Figure 3: Selected estimates for wheat index and prices (monthly averages)

Figure 4: Selected estimates for maize index and prices (monthly averages)
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other quotations examined (within as well as outside 
the US) the threshold is 37  percent (upper-left panel 
in Figure 3). Hence, we face the question of how to 
combine results into a coherent whole and distil a clear 
set of indicators per commodity market. It would be 
ingenious to suggest individual critical US stocks-to-use 
thresholds for wheat by quotation – would the policy 
recommendation then aim to maintain US inventories 
above 37 or 39 percent relative to use?

Naturally, it would be easier to interpret estimates had 
we only examined one benchmark price or index per 
commodity. However, a complex interplay of factors 
determines price volatility. It is plausible for certain 
effects to only play out under particular circumstances, 
which could be given in one location but not in another. 
For example, a country could insulate itself from volatility 
due to low global inventories by changing its trade 
policies. These opposite effects on volatility (an increase 
due to low stocks versus a decrease due to policy 
response) offset each other. It becomes impossible to 
detect and distinguish the two mechanisms when looking 
at the respective price time series. Still, it is unlikely for 
two effects to occur simultaneously in all price series 
examined. Thus, by considering more than one series, 
we have higher chances of discovering dynamics and get 
a more complete picture.

Moreover, when there is trade prices in different 
locations influence each other. They are connected via 
the Law of One Price (Fackler and Goodwin, 2001). Price 
movements transmit in space and volatility can spill 
over. Consequently, if we find an indicator related to an 
increase in volatility for one series, this might be relevant 
not only for this particular series, but for others as well, 
even if not directly reflected so in the estimation results.

Finding similar critical thresholds prompting a change in 
the level of volatility in different series gives confidence 
that we do not observe statistical artefacts, but that 
outcomes are robust. Yet, differences should not be 
unsettling. They could indicate that an effect has been 
cancelled by another one; that it has been concealed 
when aggregating (in case of the price index); that it 
may not be crucial for every series directly, but possibly 
indirectly through spillover of price movements between 
locations.

When interpreting the estimates, it is further helpful to 
keep in mind that not all of them are equally reliable. 
Some series feature long stretches of missing data, which 
can reduce the quality of estimates. For wheat this is the 
case for quotations in the Black Sea, but the Australian 
and Canadian (Vancouver) series are not complete 
either. For maize, some Brazilian data are missing. We 

Figure 5: Selected estimates for soybean index and prices (monthly averages)
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do not analyze Black Sea maize prices because of data 
availability. The least reliable soybean estimates are 
those for Argentina and Brazil because of gaps in the 
data series.

Results by covariate
To facilitate the presentation of results, unless we state 
otherwise and in particular in the figures we refer to 
estimates for monthly price averages. Still, we do not 
merely estimate the remaining two sets of price data 
(prices for the last and third week of each month) 
to check robustness of our model, but also to gain 
additional insights and discover patterns that might have 
been hidden by smoothing the time series via averaging 
and potentially reducing the signal-to-noise ratio. What 
we call our first, second, and third set of estimates 
correspond to estimates based on the last week of each 
month’s price, the third week’s price and the monthly 
average, respectively. Complete results showing estimates 
for all selected covariates and the three different ways to 
aggregate price data are gathered in the appendix.

Clearly, the boosting algorithm repeatedly selects certain 
variables as relevant into the model. This becomes visible 
when glancing over Table 2 to Table 7 and focusing on 
blank spaces versus those filled with numbers. These 
variables are related to inventories, foreign exchange 
rates, the VIX, financialization, oil prices, weather and 
time of the year. We display selected estimates in Figure 3 
to Figure 5, and we discuss them in the following section 
and broadly summarize findings in Table 1. This table is 
an attempt, for each commodity, to combine findings 
from different quotations and sets of price data into a 
group of indicators and corresponding critical values. 
Admittedly, this is a somewhat subjective exercise, which 
does not follow strictly defined criteria, but takes into 
account differential reliability of estimates and the like.

Among the stocks-to-use (stocks-to-disappearance) class 
of variables we find the global stocks-to-use ratio as well 
as that for the United States to be relevant for all three 
commodities and, in addition, for wheat and maize the 
stocks-to-disappearance ratio for major exporters. For 
wheat, global inventories below 18 percent relative to 
use prompt higher volatility. This increase can amount to 
more than 30 percent (as is the case for Canadian wheat 
at the port of St Lawrence, second set of estimates). The 
same holds when the US stocks-to-use ratio falls below 
37 percent. The boosting algorithm selects this variable 
and threshold even more consistently, for around half 
of the quotations in each of the three data sets. For the 
majority of quotations, falling below this threshold is 
associated with an increase in volatility between five and 
20 percent. Major exporter’s stocks-to-disappearance 
ratio also features as one of the variables prompting 

elevated wheat price volatility. The critical change point 
is at around 13 percent. For maize, these three ratios 
also appear to be decisive. Estimated thresholds do not 
differ much between quotations – critical ratios are 
around 17  percent for the world’s stocks-to-use ratio; 
12 percent for the US stocks-to-use ratio; and 12 percent 
for major exporters stocks-to-disappearance ratio. A 
ratio below these thresholds is associated with volatility 
shooting up by up to 20 percent, but nine percent on 
average. Compared with the other two commodities, 
thetransition between different levels of volatility looks 
less abrupt for soybeans, especially when examining 
estimates for the first data set. Several smaller steps 
are estimated instead of a single step of larger size. 
The largest, and thus critical, estimated steps coincide 
to be around 12 percent for the US and 22 percent for 
the world stocks-to-use ratio across quotations. The 
estimated impact of falling below these ratios is an 
increase in price volatility of up to 25 percent and, similar 
to maize, it is around ten percent on average. The wide 
interval on which the thresholds rest, by commodity and 
by exporter, might be explained by the importance of 
trade to production, in that a higher share of exported 
production yields higher thresholds and also when the 
particular exporting country is dominant in the global 
marketplace.

The foreign exchange value of the USD is also crucial 
for wheat price volatility. Volatility soars when the FX 
index falls below 101. This does not necessarily happen 
immediately – the impact is most pronounced after a lag 
of two months. For example, for the IGC wheat index, 
the impact of an FX index smaller than 101 is estimated 
as an 19 to 35 percent increase in volatility for the 
different quotations. In addition to the level of the FX 
index, rising FX index volatility is passed on to commodity 
price volatility. For wheat conditional volatility of the FX 
index above 1.3 percent and realized FX index volatility 
above 1.5 percent appear to be critical. While the value 
of the USD does not seem to influence maize or soybean 
price volatility, we observe an increase in maize price 
fluctuations when the realized volatility of the FX index 
raises above 1.3 percent.

Our estimation results suggest the VIX to be associated 
with changes in volatility levels, at least for wheat. 
Both the VIX and its first lag are selected for various 
quotations and data sets. Lee and Han’s (2015) recent 
paper corroborates this link between perceived overall 
stock market risk and uncertainty and agricultural price 
volatility. Lee and Han (2015) propose and extract a 
common stochastic volatility factor for energy and 
commodity prices (namely, for oil, wheat, and maize 
prices), which they find to be strongly correlated with the 
VIX. Whereas we find some evidence for a VIX-related 
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change point for maize in the first data set, it is weak in 
view of inconsistent and counter-intuitive estimates for 
the other two data sets. Similarly, the VIX does not seem 
to be associated with patterns in soybean price volatility.

Oil prices come out relevant for wheat, maize, and 
soybeans, although more so for the latter two 
commodities. For Brent oil, critical points are located at 
a price of 118 USD per barrel for wheat, 105 USD per 
barrel for maize, and 119 USD per barrel for soybeans, 
at a three-months lag. The estimated impact of a rise in 
oil price beyond this limit is explosive in some cases  – 
for US PNW No.2 SW wheat it amounts to a rise in 
volatility by more than 60 percent. While this value 
might be overestimated, the Brent oil price features as 
an important determinant of wheat price volatility for all 
three sets of pricedata. We do not find the WTI oil price 
among the covariates relevant for wheat price volatility, 
but it appears to be associated with price volatility for 
the remaining two food crops. Critical thresholds are 
estimated at 105 USD per barrel for maize, and 104 USD 
per barrel for soybeans.

Variables indicating the degree of financialization turn 
out to be relevant for all three commodities. Looking 
at volumes for wheat, a critical threshold appears to 
be between 2300000 and 2900000 trades per month. 
Regarding open interest, surpassing 465000 to 495000 
contracts entered into but yet to be offset corresponds 
to a rise in wheat price volatility. Instead of either volume 

or open interest separately, a growing ratio of the one 
to the other is correlated with an increase in volatility 
for maize and soybeans. While the change in volatility 
associated with the volume-to-open-interest ratio can 
be gradual  – especially for soybeans – the transition 
between volatility levels seems to take place around 
a quotient of four for maize and eight for soybeans. 
As pointed out before, our analysis does not allow to 
distinguish which way the causality runs. The entry of 
large numbers of non-commercial market participants 
might cause price fluctuations to amplify. But what if it 
is increased price volatility itself that attracts speculators 
looking for opportunities to take risks to get positions 
in the market? Causation might even work both ways, 
reinforcing itself in a spiral of higher volatility gaining the 
attention of non- commercial traders and the increase 
in volume in turn resulting in yet higher volatility. While 
this uncertainty might not permit to draw certain policy 
implications, we can use the association between 
volatility levels and certain measures of financialization 
as an early warning indicator regardless of the direction 
of causality. With the expectation of high volatility 
attracting non-commercial market participants, 
volume and related variables can be understood as a 
forward-looking measure of volatility, similar to implied 
volatility, regardless of their own causal impact.

The boosting algorithm selects variables related to 
El Niño and La Niña, mainly for wheat and soybeans. It is 
very hard to make a general statement on the influence 

Wheat Maize Soybeans

Global stocks-to-use ratio (percent) 18 17 22

US stocks-to-use ratio (percent) 37 12 12

Major exporters stocks-to-disappearance ratio (percent) 13 12

Foreign Exchange Index 101

FX Index conditional volatility (percent) 1.3

FX Index realized volatility (percent) 1.5 1.3

VIX 23

Brent oil price (USD per Barrel), third lag 118 105 119

WTI oil price (USD per Barrel) 105 104

Volume (thousand) 2700

Open Interest (thousand) 485

Volume-to-open-interest ratio 4.3 8.6

Non-commercial long positions (thousand) 40

Sea surface temperature anomalies in Niño 3.4 region -1.0

Oceanic Niño Index 0.6

Month June/July

Table 1: Critical thresholds by commodity
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of these phenomena on agriculture. Effects vary between 
regions and further depend on the exact moment in 
the growing phase when changed weather conditions 
hit (Baffes, 2015). As a very rough rule, in the northern 
hemisphere El Niño means more moisture, hence, higher 
yields. Assuming a positive association between levels 
of prices and their volatility (Prakash, 2011), this implies 
lower volatility than usual during phases of El Niño. 
Indeed, our estimates show a rise in wheat price volatility 
associated with episodes of moderate or strong La Niña. 
Weather-related variables seem to be less important for 
maize and soybeans than for wheat. This might be linked 
to the fact that the former are considered irrigated crops 
in the main. Still, Brazilian maize and US soybean price 
volatility goes down whenever the Oceanic Niño Index 
passes a 0.2 and 0.6 threshold, respectively, which is 
a signal of El Niño. In case of maize in Brazil, at least 
for the southern region of Rio Grande do Sul, this is 
in line with Berlato and Fontana’s (2001) observation 
that while La Niña causes harvest losses, non-irrigated 
spring-summer crops benefit from El Niño. Instead of 
trying to trace weather effects on volatility back to its 
differential impacts on yields, one can alternatively make 
sense of the estimation results by recalling that during 
phases of El Niño it is fairly clear what weather to expect. 
Lower uncertainty concerning yields in turn is reflected 
in reduced fluctuations in prices.

In addition to the factors discussed so far, we observe a 
seasonal effect. An upswing in volatility is estimated for 

the second half of the year. It is particularly pronounced 
for maize. This could be related to USDA’s switch 
in projections to a new marketing year (detailed in 
section 3) in its WASDE.

Additional remarks
It is interesting to observe that the estimated effect of 
lagged negative returns on volatility differs from that 
of positive returns (Figure 6). Part of the rationale for 
Nelson (1991) to introduce the exponential ARCH model 
was to allow for exactly this differential effect; in the 
conventional ARCH model, only the magnitude but not 
the sign of lagged residuals drives volatility. Contrary to 
the evidence of a negative association between stock 
returns and volatility drawn on by Nelson (1991), of 
volatility rising with bad and falling with good news 
(measured as excess returns lower or higher than 
expected), we find volatility to increase when returns are 
unusually high, i.e. prices are increasing.

Reflecting on our estimation results, it becomes clear 
that among the variables the boosting algorithm chooses 
as model constituents pertinent to volatility, most are 
factors not leading to immediate policy implications. 
For model components such as the stocks-to-use ratio 
we can derive the recommendation to design policies 
such as to keep global wheat inventories above a 
threshold of 18 percent relative to use. However, it is 
not feasible to shape variables such as the Oceanic Niño 
Index, VIX, oil price or foreign exchange rate through 

Figure 6: Estimated impact of lagged (by one month) returns on wheat price volatility (monthly averages)
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policies. (Of course, it is possibly to try and control 
some of these variables to a certain extend. However, 
the consequences of influencing e.g. exchange rates 
would reach so far beyond agricultural commodity 
price volatility that it would never occur to anyone to 
do so with this aim in mind. Thus, it is not realizable in 
practice.) Whereas it is crucial to have just one set of 
indicators per commodity to guide policy-making, even 
for variables impossible to impact such a compilation is 
helpful to get a sense of potential future volatility levels. 
Still, when the focus shifts from what influences volatility 
to anticipating volatility ahead, a question arises on 
whether to combine estimates for different quotations 
into a single set of variables and critical thresholds (as 
was done in the previous sub-section) would constitute 
the best possible approach. Another question arises 
on whether to use the estimated exp (ηˆt/2) for each 
quotation instead – leaving out terms involving lagged 
returns while using expected future values for the 
remaining ex-planatory variables – and then generate 
projected volatility levels for different scenarios? While 
this strategy has the advantage of readily providing a 
range of volatility projections per price quote, we believe 
that a more complete picture evolves when considering 
estimation results jointly for reasons detailed above 
(namely, transmission of price shocks across locations 
and complex mechanisms potentially hidden for some of 
the price series).

Notably, one important variable that would have 
immediate policy implications is missing in our study – 
trade policies. These can have a substantial impact on 
price movements. A price hike following a shortage of 
supply on the world market can be exacerbated if a major 
exporter decides to put in place an export ban in order 
to secure sufficient domestic supplies. The literature 
provides considerable evidence that insulating trade 
policies amplify volatility (Martin and Anderson, 2012; 
Ivanic and Martin, 2014). Martin and Anderson (2012) 
attribute almost 30 percent of the observed change in the 
international price of wheat between 2005 and 2008 to 
modifications in border protection rates. Unfortunately, 
it is an intricate task to assign numerical values to these 
policies. First, there is not just one type of trade-related 
policy measure but various, whose relative importance 
is unclear. Second, their significance has to be seen in 
the context of the importance of the implementing 
country for trade in the respective commodity. Third, the 
same measure should have very different domestic and 
foreign effects. For example, an export tax on wheat 
implemented by Argentina should have a different 
effect on Argentinian wheat prices than one applied 
by Russia. A different, and probably even more serious 
concern is that in case of an export ban, export prices 
are typically not available for the duration of the policy. 

Russia prohibited wheat exports between August 2010 
and June 2011; we do not have wheat prices for the 
Black Sea between October 2010 and May 2011. How 
can we possibly identify the impact of a variable during 
a specific period when it is for this exact period that data 
are missing?

Conclusions

Our statistical assessment of volatility patterns in food 
crops has drawn attention towards a selection of factors 
and associated critical thresholds that appear key when 
trying to anticipate future price variability. The main 
findings of this paper – critical thresholds above which 
price volatility rises or falls abruptly – are condensed in 
Table 1.

Clearly though, we have to understand the relative 
importance of variables in the context of our modelling 
framework. There is, of course, a rationale to believe that 
the model set-up is appropriate and is probably among the 
best suitable approaches to address our question under 
given constraints, such as data availability. Nevertheless, 
while we keep its structure very flexible, our model might 
still oversimplify an immensely complex interplay of 
different factors that drives volatility. Variables that are 
either missing, or have been quantified inadequately or 
observed at a wrong time scale or frequency, cannot be 
detected by the model. For example, we do not include 
a measure for restrictive trade policies. Consequently, 
although well established, it is impossible to reflect the 
impact of policy on commodity price volatility within our 
modelling framework.

In addition, it would be tempting to infer causation from 
the results, that is, to interpret variables selected by 
the boosting algorithm as relevant for price volatility as 
drivers of volatility. While the channels through which 
certain variables affect price fluctuations are particularly 
well understood, for other variables, such as those 
related to financialization, there is less congruence. 
Finding correlation between an increase in price volatility 
and the number of non-commercial players entering 
the market, one might conclude that activities of these 
market participants drive price formation that result in 
higher volatility. However, correlation does not imply 
causation. Correlation could indicate causation, or it 
could be mere coincidence or even the causal chain 
might even run the other way. While comprehension of 
causal mechanisms is, of course, ultimately desirable, for 
the purpose of anticipating changes in volatility mere 
correlation is also useful.
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Still, awareness of the limitations of the study certainly 
does not refrain from the recommendation to be diligent 
when certain variables approach specific thresholds. It is 
insightful that some of these variables turn out relevant 
when lagged. This might be hinting at causality instead 
of mere association. More importantly, it allows us to 
have an indication of possibly elevated future volatility 
in advance.

Naturally, our analysis has also generated further 
research questions and possible refinements to the 
model set-up. This includes a review of the frequency 
that data are modelled. Would an analysis based on a 
daily frequency be able to provide additional insights? 
Would a higher frequency mirror developments in 
market more appropriately? Do results change under 
temporal aggregation? Further, although it might be 
difficult to formulate, a variable quantifying trade policy 
measures would be a valuable addition to the model. 
Finally, understanding if threshold levels have evolved 
over time would be important to address, that is, if they 
are subject to trend. For example, is it that volatility is 
triggered with a lower stock-to-use ratio than was the 
case in the past? Has the influence of oil prices grown 
with the emergence of biofuels? Are exchange rates 
more influential with expanding trade? While beyond 
the scope of this paper, these questions warrant further 
enquiry.
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Appendix

While Figure 3 to 5 and Table 1 display selected results 
only, Figure 7 to Figure 15 together with Table 2 to 
Table 7 show the complete set of estimates. Empty cells 
indicate that the algorithm has not selected this particular 
variable. Entries show critical thresholds. Clearly, a tree is 
not limited to one threshold, but can have several (see, 
for example, the case of the volume-to-open-interest 
ratio for soybeans in the second panel, third row of 
Figure 14). For ease of presentation we only report one 
threshold per variable in the tables, the one making most 
difference in terms of changes in volatility, e.g. for the 
IGC soybean index’ volume-to-open-interest ratio we list 
9.2 as a ratio above this value prompt an rise in volatility 
by almost 20 percent, about twice as much as the other 
thresholds estimated.
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Table 2: Estimated critical thresholds for wheat index and quotations (last week’s value of each month).  
L1, L2 or L3 added to the variable name indicates the first, second or third lag. Rvol and Cvol specify realized and 

conditional volatility of the variables
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Table 3: Estimated critical thresholds for maize and soybean index and quotations (last week’s value of each 
month). L1, L2 or L3 added to the variable name indicates the first, second or third lag. Rvol and Cvol specify 

realized and conditional volatility of the variables
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Table 4: Estimated critical thresholds for wheat index and quotations (third week’s value of each month).  
L1, L2 or L3 added to the variable name indicates the first, second or third lag. Rvol and Cvol specify realized and 

conditional volatility of the variables
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Table 5: Estimated critical thresholds for maize and soybean index and quotations (third week’s value of each 
month). L1, L2 or L3 added to the variable name indicates the first, second or third lag. Rvol and Cvol specify 

realized and conditional volatility of the variables
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Table 6: Estimated critical thresholds for wheat index and quotations (monthly average).  
L1, L2 or L3 added to the variable name indicates the first, second or third lag. Rvol and Cvol specify realized and 

conditional volatility of the variables
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Table 7: Estimated critical thresholds for maize and soybean index and quotations (monthly average).  
L1, L2 or L3 added to the variable name indicates the first, second or third lag. Rvol and Cvol specify realized and 

conditional volatility of the variables
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Figure 7: Estimates for wheat index and prices (last week’s value of each month)
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Figure 8: Estimates for wheat index and prices (third week’s value of each month)
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Figure 9: Estimates for wheat index and prices (monthly average)
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Figure 10: Estimates for maize index and prices (last week’s value of each month)
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Figure 11: Estimates for maize index and prices (third week’s value of each month)
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Figure 12: Estimates for maize index and prices (monthly average)
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Figure 13: Estimates for soybean index and prices (last week’s value of each month)
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Figure 14: Estimates for soybean index and prices (third week’s value of each month)
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Figure 15: Estimates for soybean index and prices (monthly average)
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